Abstract

Fluid bolus therapy (FBT) is fundamental to the management of circulatory shock in critical care but balancing the benefits and toxicities of FBT has proven challenging in individual patients. Improved predictors of the hemodynamic response to a fluid bolus, commonly referred to as a fluid challenge, are needed to limit non-beneficial fluid administration and to enable automated clinical decision support and patient-specific precision critical care management. In this study we retrospectively analyzed data from 394 fluid boluses from 58 pigs subjected to either hemorrhagic or distributive shock. All animals had continuous blood pressure and cardiac output monitored throughout the study. Using this data, we developed a machine learning (ML) model to predict the hemodynamic response to a fluid challenge using only arterial blood pressure waveform data as the input. A Random Forest binary classifier referred to as the ML fluid responsiveness algorithm (MLFRA) was trained to detect fluid responsiveness (FR), defined as a ≥ 15% change in cardiac stroke volume after a fluid challenge. We then compared its performance to pulse pressure variation, a commonly used metric of FR. Model performance was assessed using the area under the receiver operating characteristic curve (AUROC), confusion matrix metrics, and calibration curves plotting predicted probabilities against observed outcomes. Across multiple train/test splits and feature selection methods designed to assess performance in the setting of small sample size conditions typical of large animal experiments, the MLFRA achieved an average AUROC, recall (sensitivity), specificity, and precision of 0.82, 0.86, 0.62. and 0.76, respectively. In the same datasets, pulse pressure variation had an AUROC, recall, specificity, and precision of 0.73, 0.91, 0.49, and 0.71, respectively. The MLFRA was generally well-calibrated across its range of predicted probabilities and appeared to perform equally well across physiologic conditions. These results suggest that ML, using only inputs from arterial blood pressure monitoring, may substantially improve the accuracy of predicting FR compared to the use of pulse pressure variation. If generalizable, these methods may enable more effective, automated precision management of critically ill patients with circulatory shock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.