Abstract
This paper presents a feed-forward control method for improving the power reference tracking performance of Virtual Synchronous Machines (VSMs) without compromising their main features in terms of grid forming capability and inertia emulation. The proposed approach acts directly on the phase angle used for reference frame transformations in the control system and can be generally applied to all VSM-based control schemes relying on a virtual swing equation. A small-signal model of a selected VSM implementation with the proposed feedforward control is derived. This model is utilized to assess the impact of the power reference feedforward on the operational characteristics of the VSM. The improvement of the power reference tracking capability is demonstrated by analysing the transfer function from the power reference to the power injected to the grid, as extracted from the small-signal model. The frequency domain analysis also demonstrates how the oscillation modes of the VSM and the inertial response to grid frequency perturbations remain unaffected by the proposed feed-forward control. Finally, the findings from the frequency domain analysis are verified by time domain simulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.