Abstract

The main purpose of this research is to evaluate the improvement in positional accuracy (PAI) of cadastral boundary points’ coordinates through the adjustment of a large set of digital cadastral index maps of rural regions based on traditional Franciscan-origin maps of heterogeneous geometric quality. The distribution of residuals of local coordinates of reference points onto the as yet unconnected neighboring points is researched. In this article, we use the adjustment method based on neighborhood transformation with a mechanical membrane model deriving from Hooke’s Law and consider a general case study of a Slovenian traditional cadastral graphic database of various historical origins. The number of geometric errors in fieldbook information from outdated measurement technologies and inappropriate implementations of cadastral index map geometric maintenance reduces the number of complying datasets of relative geometry by 50%. Previous experiments in traditional cadastral index maps of rural regions, with triangle-based piecewise affine plane transformation (RMSE = 2.4 m), have been improved by the membrane method (RMSE = 1.0 m), based on tests at 623 control points. Positional accuracy improvement of cadastral geospatial data and the integration of geometric subsystems provided recognizable benefits for the future maintenance of a unique, integrated, centralized graphical cadastral subsystem, which is in the testing phase in Slovenia.

Highlights

  • Experimenting with methods of positional accuracy improvement (PAI) of cadastral maps and their integration with third party geospatial data in land administration systems (LASs) is an emerging topic of interest worldwide

  • The main objective of the study was to test a procedure for positional accuracy improvement in digital cadastral index maps, with a neighborhood adjustment method based on legacy data pertaining to traditional, Franciscan-origin maps of rural regions, of heterogeneous geometric quality

  • The results show two main classes of cadastral municipality index map accuracy, each 32%

Read more

Summary

Introduction

Experimenting with methods of positional accuracy improvement (PAI) of cadastral maps and their integration with third party geospatial data in land administration systems (LASs) is an emerging topic of interest worldwide. Geometric improvement and the integration of data captured in land information systems (LISs) are in different developmental stages among surveying and mapping authorities (SMA) and research groups in several countries (Slovenia, Austria, Australia, Germany, Switzerland, United Kingdom, Italy, Croatia, Malaysia, and others, described in reference papers) in terms of effective methodologies and improving standards. As done in Bavaria, have undertaken systematical surveys of additional reference control points and boundary monuments and provided a homogeneous basis for the transformation and PAI of cadastral and other geospatial data in the ETRS system

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.