Abstract

The effect of pMDI on physical and mechanical properties of the particleboards made from urea–glyoxal resin was investigated. The nontoxic and ecofriendly urea–glyoxal (UG) resin was synthesized under weak acid conditions, and its different properties were measured. Then, pMDI at various contents (4, 6 and 8% on resin solids) was added to the UG resin prepared. The thermal and physicochemical properties of the resins prepared as well as their water absorption, flexural properties (flexural modulus and strength) and internal bond (IB) strength of the particleboard panels bonded with them were measured according to standard methods. According to the physicochemical results obtained, the addition of pMDI significantly accelerated the gel time and increased the viscosity and solids content of UG resins. Differential scanning calorimetry indicated that the addition of pMDI decreases the onset and curing temperatures of the UG resin. Physical analysis results of the panels indicated that the particleboards made from UG resins with isocyanate yielded lower water absorption when compared to those bonded with the control UG resins. Based on the findings of this research work, the mechanical properties of particleboard panels bonded with UG resins could be significantly enhanced by the addition of increasing percentages of pMDI. The panels having 8 wt% pMDI exhibited the highest flexural modulus, flexural strength and IB strength value and the lowest water absorption among all the panels prepared.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call