Abstract

We demonstrate a simple and novel technique to improve the power conversion efficiency of polymer:fullerene solar cells based on the low bandgap polymer poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and the soluble fullerene derivative PCBM. We dope the blend via cosolution with the electron accepting molecule tetrafluoro-tetracyanoquinodimethane (F4-TCNQ). Doping concentrations of F4-CNQ from 0 - 0.3 %, with respect to the weight of the polymer, were investigated. The dark current-voltage (IV) characteristics, the illuminated IV characteristics, the external quantum efficiency, and the hole mobility in dependence of the doping concentration were studied. We observe an increase in the photocurrent resulting in improved solar cell efficiencies, which corresponds to an increase in the hole mobility in the polymer. We explain this enhancement in the solar cell performance in terms of decreased carrier recombination.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.