Abstract

Abstract Microbial Fuel Cells (MFCs) can be conveniently used for wastewater treatment and bioelectricity production. Their efficiency is strongly influenced by the physico-chemical properties of the ion-conducting membrane. In this work we prepare Nafion™-based composite membranes by using mesoscale SBA-15 silica, and organic-inorganic fillers obtained by functionalizing SBA-15 with SO3H groups. The proposed membranes are tested as alternative separators in MFCs for applications in wastewater treatment and their performances compared to those of standard Nafion™ 117. Prolonged (3 months) MFC operation shows that the composite membrane with 5 wt% of SBA-15 functionalized with 10 mol% of SO3H gives maximum power density of 380 mW m−3, namely three times better than that of Nafion™ after 90 days of operation. The same membrane offers a very effective COD removal after 14 days (more than 95%), an impressive coulombic efficiency of 34%, and very high resistance to biofouling. We conclude that the use of silica-based SO3H functionalized fillers is a powerful strategy to improve the performances of Nafion™ membranes in MFCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.