Abstract

The purpose of this study is to motivate the use of the simpler Linear Discriminant (LD) classifier as compared to the commonly used Multilayer-perceptron-backpropagation (MLP-BP) neural network for Brain Computer Interface (BCI) design. We investigated the performances of MLP-BP and LD classifiers for mental task based BCI design. In the experimental study, EEG signals from five mental tasks were recorded from four subjects and the classification performances of different combinations of two mental tasks were studied for each subject. Two different AR models were used to compute the features from the electroencephalogram signals: Burg's algorithm (ARB) and Least Square algorithm (ARLS). The results showed that in most cases, LD classifier gave superior classification performance as compared to MLP-BP, with reduced computational complexity. However, the best mental tasks for each subject were the same using both classifiers. ARLS gave the best performance (93.10%) using MLP-BP and (97.00%) using LD. As the best mental task combinations varied between subjects, we conclude that for different subjects, proper selection of mental tasks and feature extraction methods would be essential for a BCI design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call