Abstract

The augmented Lagrangian coordination (ALC), as an effective coordination method for decomposition-based optimization, offers significant flexibility by providing different variants when solving nonhierarchically decomposed problems. In this paper, these ALC variants are analyzed with respect to the number of levels and multipliers, and the resulting advantages and disadvantages are explored through numerical tests. The efficiency, accuracy, and parallelism of three ALC variants (distributed ALC, centralized ALC, and analytical target cascading (ATC) extended by ALC) are discussed and compared. Furthermore, the dual residual theory for the centralized ALC is extended to the distributed ALC, and a new flexible nonmonotone weight update is proposed and tested. Numerical tests show that the proposed update effectively improves the accuracy and robustness of the distributed ALC on a benchmark engineering test problem.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.