Abstract

The water gas shift reaction (WGSR) is catalyzed by supported ionic liquid phase (SILP) systems containing homogeneous Ru complexes dissolved in ionic liquids (ILs). These systems work at very low temperatures, that is, between 120 and 160 °C, as compared to >200 °C in the conventional process. To improve the performance of this ultra-low-temperature catalysis, we investigated the influence of various additives on the catalytic activity of these SILP systems. In particular, the application of methylene blue (MB) as an additive doubled the activity. Infrared spectroscopy measurements combined with density functional theory (DFT) calculations excluded a coordinative interaction of MB with the Ru complex. In contrast, state-of-the-art theoretical calculations elucidated the catalytic effect of the additives by non-covalent interactions. In particular, the additives can significantly lower the barrier of the rate-determining step of the reaction mechanism via formation of hydrogen bonds. The theoretical predictions, thereby, showed excellent agreement with the increase of experimental activity upon variation of the hydrogen bonding moieties in the additives investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.