Abstract
In classification tasks, the error rate is proportional to the commonality among classes. In conventional GMM-based modeling technique, since the model parameters of a class are estimated without considering other classes in the system, features that are common across various classes may also be captured, along with unique features. This paper proposes to use unique characteristics of a class at the feature-level and at the phoneme-level, separately, to improve the classification accuracy. At the feature-level, the performance of a classifier has been analyzed by capturing the unique features while modeling, and removing common feature vectors during classification. Experiments were conducted on speaker identification task, using speech data of 40 female speakers from NTIMIT corpus, and on a language identification task, using speech data of two languages (English and French) from OGI_MLTS corpus. At the phoneme-level, performance of a classifier has been analyzed by identifying a subset of phonemes, which are unique to a speaker with respect to his/her closely resembling speaker, in the acoustic sense, on a speaker identification task. In both the cases (feature-level and phoneme-level) considerable improvement in classification accuracy is observed over conventional GMM-based classifiers in the above mentioned tasks. Among the three experimental setup, speaker identification task using unique phonemes shows as high as 9.56 % performance improvement over conventional GMM-based classifier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.