Abstract
The influence of a 200 nm Cu2O coating layer on the electrochemical performance of an 800 nm Si thin-film anode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic charge/discharge measurements. The electrochemical performance of the Si thin-film anode was improved by the coating layer. The coated Si anode exhibited higher values of conductivity in comparison with the pristine Si anode. Scanning electron microscopy images of the anodes after cycling test showed that the coated Si anode after cycling test had less cracks than the pristine Si anode. The galvanostatic charge/discharge measurements reveal that the cyclability and rate capability of the coated Si thin-film anode were better than the pristine Si thin-film anode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.