Abstract

Relative intensity noise (RIN) is an important factor that determines the performance of optical phased arrays (OPA) that are configured using semiconductor lasers as light emission sources. This study proposes a method of improving the optical signal-to-noise ratio (OSNR) of an OPA by reducing the RIN and using high coherence of optically injection-locked (OIL) laser arrays. We numerically demonstrated a laser RIN reduction of 22.7 dB by the OIL laser compared to a free-running laser. We achieved an OPA RIN reduction of 13.2 dB by combining the coherent outputs with the uncorrelated noise of 21 OIL lasers, compared to a single OIL laser RIN. Consequently, we demonstrated an OPA OSNR increase of approximately 13.8 dB based on the OIL-based OPA compared to that of the conventional noise-correlated OPA configuration. Additionally, we confirmed the maintenance of OPA OSNR improvement during OPA operations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call