Abstract

Molecular dopants can effectively improve the performance of organic solar cells (OSCs). Here, PM6/BTP-eC9-4Cl-based OSCs are fabricated by a layer-by-layer (LbL) deposition method, and the electron acceptor BTP-eC9-4Cl layer is properly doped by n-type dopant benzyl viologen (BV) or [4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl]dimethyl-amine (N-DMBI-H). The power conversion efficiency (PCE) of OSCs increases from 16.80 to 17.61 or 17.84% when the acceptor layer is doped by BV (0.01 wt %) or N-DMBI-H (0.01 wt %), respectively. At the optimal doping concentration, the device exhibits more balanced charge transport, fewer bimolecular recombinations, faster charge separation and transfer, and better stability. This doping strategy has good universality; when the acceptor layer L8-BO of LbL OSCs is doped by 0.01 wt % BV or 0.01 wt % N-DMBI-H, the PCE increases from 17.49 to 18.35 or 18.25%, respectively. All in all, our studies have demonstrated that the doping strategy is effective in enhancing the performance of OSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.