Abstract
In this paper, we present a disturbance compensation technique to improve the performance of interferometric imaging for extremely large ground-based telescopes, e.g., the Large Binocular Telescope (LBT), which serves as the application example in this contribution. The most significant disturbance sources at ground-based telescopes are wind-induced mechanical vibrations in the range of 8-60 Hz. Traditionally, their optical effect is eliminated by feedback systems, such as the adaptive optics control loop combined with a fringe tracking system within the interferometric instrument. In this paper, accelerometers are used to measure the vibrations. These measurements are used to estimate the motion of the mirrors, i.e., tip, tilt and piston, with a dynamic estimator. Additional delay compensation methods are presented to cancel sensor network delays and actuator input delays, improving the estimation result even more, particularly at higher frequencies. Because various instruments benefit from the implementation of telescope vibration mitigation, the estimator is implemented as a separate, independent software on the telescope, publishing the estimated values via multicast on the telescope's ethernet. Every client capable of using and correcting the estimated disturbances can subscribe and use these values in a feedforward for its compensation device, e.g., the deformable mirror, the piston mirror of LINC-NIRVANA, or the fast path length corrector of the Large Binocular Telescope Interferometer. This easy-to-use approach eventually leveraged the presented technology for interferometric use at the LBT and now significantly improves the sky coverage, performance, and operational robustness of interferometric imaging on a regular basis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.