Abstract

Accurate and timely access to building rooftop information is very important for urban management. The era of big data brings new opportunities for rooftop extraction based on deep learning and high-resolution satellite imagery. However, collecting representative datasets from such big data to train deep learning models efficiently is an essential problem that still needs to be explored. In this study, geospatial stratified and optimized sampling (GSOS) based on geographical priori information and optimization of sample spatial location distribution is proposed to acquire representative samples. Specifically, the study area is stratified based on land cover to divide the rooftop-dense stratum and the rooftop-sparse stratum. Within each stratum, an equal amount of samples is collected and their spatial locations are optimized. To evaluate the effectiveness of the proposed strategy, several qualitive and quantitative experiments are conducted. As a result, compared with other common sampling approaches (e.g., random sampling, stratified random sampling, and optimized sampling), GSOS is superior in terms of the abundance and types of collected samples. Furthermore, two quantitative metrics, the F1-score and Intersection over Union (IoU), are reported for rooftop extraction based on deep learning methods and different sampling methods, in which the results based on GSOS are on average 9.88% and 13.20% higher than those based on the other sampling methods, respectively. Moreover, the proposed sampling strategy is able to obtain representative training samples for the task of building rooftop extractions and may serve as a viable method to alleviate the labour-intensive problem in the construction of rooftop benchmark datasets.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.