Abstract

A major trade-off in the field of circularly polarized luminescence (CPL) of pure organic materials is that the large luminescence dissymmetry factor (glum ) usually gives rise to the suppression of luminescence efficiency (ΦPL ). Here, a supramolecular self-assembled system, driven by arene-perfluoroarene (AP) interactions of chiral polycyclic aromatic hydrocarbons (PAHs) and octafluoronaphthalene (OFN), is reported to provide a solution to this problem. Two kinds of chiral PAHs based on pyrene and anthracene could co-assemble with OFN in hybrid solvents to form long-range-ordered AP assemblies. The detailed process of AP interaction driving self-assembly was verified by morphological measurements and fluorescence spectra. The AP assemblies exhibited chirality amplification not only in the excited state but also in the ground state. In addition, the AP assemblies showed an enhanced luminescence efficiency compared with the individual chiral PAHs due to the energy-barrier effect of OFN. The present strategy based on AP interactions could be applied to boost the development of highly efficient CPL-active materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.