Abstract

The mandatory implementation of the standards laid out in the Energy Efficiency Existing Ship Index (EEXI) and the Carbon Intensity Indicator (CII) requires ships to improve their efficiency and thereby reduce their carbon emissions. To date, the steam Rankine cycle (RC) has been widely used to recover wasted heat from marine main engines to improve the energy-conversion efficiency of ships. However, current marine low-speed diesel engines are usually highly efficient, leading to the low exhaust gas temperature. Additionally, the temperature of waste heat from exhaust gas is too low to be recovered economically by RC. Consequently, a solution has been proposed to improve the overall efficiency by means of waste heat recovery. The exhaust gas is bypassed before the turbocharger, which can decrease the air excess ratio of main engine to increase the exhaust gas temperature, and to achieve high overall efficiency of combined cycle. For quantitative assessments, a semi-empirical formula related to the bypass ratio, the excess air ratio, and the turbocharging efficiency was developed. Furthermore, the semi-empirical formula was verified by testing and engine model. The results showed that the semi-empirical formula accurately represented the relationships of these parameters. Assessment results showed that at the turbocharging efficiency of 68.8%, the exhaust temperature could increase by at least 75 °C, with a bypass ratio of 15%. Moreover, at the optimal bypass ratio of 11.1%, the maximum overall efficiency rose to 54.84% from 50.34%. Finally, EEXI (CII) decreased from 6.1 (4.56) to 5.64 (4.12), with the NOx emissions up to Tier II standard.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call