Abstract

In this study, random nanoscale rods (RNRs) with a double refractive index were fabricated via spin coating, dry etching, and sputtering, which are processes that are extensively applied in industry. With regard to optical properties, the RNRs with a double refractive index (RNRsD) exhibited a total transmittance that was >90% in the visible range and an optical haze in the range of 42%–50% at a wavelength of 520 nm. Organic light-emitting diodes (OLEDs) with RNRsD, where SiO2 was deposited on the RNRs via radiofrequency sputtering, exhibited an enhancement of 34.5% in the external quantum efficiency compared with OLEDs with the bare substrate. Furthermore, the color variation of the OLEDs with the optimal RNRsD with respect to a change in the viewing angle was improved from color coordinates of Δ(x, y) = (0.032, 0.034) to Δ(x, y) = (0.014, 0.014). Therefore, the proposed film can be used as a scattering layer for enhancing the light extraction and viewing angle of OLEDs by reducing the substrate mode light loss and changing the direction of light. In addition to using a low-temperature fabrication process that does not employ a photomask and a lithographic template, the proposed method is applicable to flexible devices because it uses a polymer and a thin inorganic film.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.