Abstract

The concatenated micro-tower (CMT) is a new configuration for concentrated solar power plants that consists of multiple mini-fields of heliostats. In each mini-field, the heliostats direct and focus sunlight onto designated points along an insulated tube, where thermal receivers are located. The heat transfer fluid, flowing through a multitude of discrete receivers, is combined and directed towards a single power block. The key advantages of CMT are its dual-axis tracking system and dynamic receiver allocation, i.e., the ability of each heliostat to direct sunrays towards receivers from adjacent mini-fields throughout the day according to their optical efficiency. Here we compare between the annual optical efficiencies of a conventional trough, large tower, and CMT configuration, all located at latitude 36 N. For each configuration, we calculated the annual optical efficiency based on the cosine factor and atmospheric transmittance. CMT’s dynamic receiver allocation provides more uniform electricity production during the day and throughout the year and improves the annual optical efficiency by 12–19% compared to conventional trough and large tower configurations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.