Abstract

This work reports the developments made in improving the numerical stability of the viscoelastic solvers available in the open-source finite volume computational library \(OpenFOAM^{\textregistered }\). For this purpose, we modify the usual both-side diffusion (BSD) technique, using a new approach to discretize the explicit diffusion operator. Calculations performed with the new solver, for two benchmark 2D case studies of an upper-convected Maxwell (UCM) fluid, are presented and compared with literature results, namely the 4:1 planar contraction flow and the flow around a confined cylinder. In the 4:1 planar contraction flow, the corner vortex size predictions agree well with the literature, and a relative error below \(5.3 \%\) is obtained for \(De \le 5\). In the flow around a confined cylinder, the predictions of the drag coefficient on the cylinder are similar to reference data, with a relative error below \(0.16 \%\) for \(De \le 0.9\).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.