Abstract

The morphology with strong molecular packing order and gradient vertical composition distribution associated with efficient charge transport and collection is critical to achieve high performance in nonfullerene solar cells. However, the rapid solidification process of the active layer upon the fast removal of solvent usually results in a kinetically trapped state with undesired morphology. Herein, we proposed a strategy to extend the crystal growth time of the acceptor via a high-boiling-point additive that selectively dissolved the acceptor. This was enabled by adding dibenzyl ether (DBE) to the poly(3-hexylthiophene) (P3HT):O-IDTBR blend in chlorobenzene (CB) solution. The combination of the kinetic study by time-resolved ultraviolet-visible (UV-vis) absorption spectra and detailed morphological characterization allows us to correlate the crystallization kinetics with the microstructural transition. The results show that the crystal growth time of O-IDTBR increases from 3 to 60 s upon the addition of 0.75% DBE, leading to further evolution of the molecular order of O-IDTBR during the DBE-dominated drying period. Meanwhile, O-IDTBR has more time to migrate toward the substrate owing to the larger surface energy. In addition, the onset of the crystallization process of P3HT is brought forward from 8 to 6 s due to the reduced solvent quality, which favors P3HT to crystallize into a fibril network. As a result, an optimized morphology that features the enhanced molecular packing order of P3HT and O-IDTBR as well as the vertical compositional gradient of O-IDTBR is obtained. Devices based on the optimized blend show more balanced charge transport and suppressed bimolecular recombination, giving rise to an improved power conversion efficiency (PCE) from 4.29 ± 0.04 to 7.30 ± 0.12%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call