Abstract

An improvement to the thermochemical module of the electric arc furnace (EAF) process model developed by Meier based on the work of Logar, Dovžan, and Skrjanc is presented. Different models for the calculation of activities in melt and slag are implemented, and separate reaction zones are defined for the interaction of slag and melt, the injection of oxygen, and the injection of carbon. For each zone, equilibrium compositions and reaction rates are calculated. Furthermore, diffusion of species is considered as a rate-limiting factor in reactions between slag and melt, and diffusion rates are calculated from the bulk melt to the reaction zone where reactions with the slag take place. Oxygen and sulfur dissolved in the melt and CaS in the slag are added as new species not previously considered in the EAF model. The treatment of carbon is revised to reduce model complexity and improve accuracy. The improved model is validated using extensive data from an industrial EAF, and results are compared to measured data as well as results obtained with the unmodified model. The different models for the determination of thermodynamic activities and their impacts on the duration of the simulation as well as its results are evaluated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call