Abstract
This paper proposes three steps of improvements for identification of the nonlinear dynamic system, which exploits the concept of a state-space based time domain Volterra model. The first step is combining the forward and backward estimator in the original Volterra model; the second step is reformulating the Volterra model into a state-space model so that the Kalman Smoother (KS) adaptive filter can be used to estimate the kernel coefficients; the third step is optimization of KS parameters using evolutionary computing algorithms such as particle swarm optimization (PSO), genetic algorithm (GA) and artificial bee colony (ABC). The applicability of the proposed methods is tested in three simulated data and one experimental data. The results show that Volterra model with PSO–KS is preferable for fast identification process, while ABC–KS method is preferable for accurate identification process. However, in some cases, as the iteration number increases the result of PSO–KS method is comparable with ABC–KS method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.