Abstract
AbstractThe operational dynamic subseasonal to seasonal (S2S) models for Madden‐Julian oscillation (MJO) forecasting mostly still suffer from systematic errors in capturing the MJO's key dynamic features, such as its growth rate and propagation speed. By deriving the linear dynamic operators using the linear inverse modeling (LIM) approach, we propose a method to partly correct the errors in MJO linear dynamic operators to improve the MJO predictions of three operational dynamic S2S models. Correcting the deficiencies of the too‐fast decay rates and the unrealistic propagating phase speeds lead to MJO prediction skills being extended by approximately 2–4 days. The improvements are more significant for the models with larger biases in MJO amplitude and propagation. This approach in principle may be extendable to predictions of other types of climate variability such as ENSO on one hand, and possible inclusions of nonlinear dynamics effects on the other hand.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.