Abstract

The current study aims to investigate the microstructural properties, diametral tensile strength, Weibull modulus, and surface roughness (Ra) of the zirconia-mullite composites. The simultaneous effect of duration of the mechanical activation (MA) process of starting materials, as well as TiO2 and ZnO additions on the mentioned properties, were studied. X-ray diffraction analysis showed that mullite was the main crystalline phase in 6–24 h mechanically activated-TiO2 containing samples which were subsequently heat treated at 1450 °C. Prolonging the duration of the MA process to 72 h led to the crystallization of the tetragonal zirconia as one of the main crystalline phase in the mentioned samples. As the heat treatment temperature increased to 1550 °C, the dependence of the type of the crystalline phases on the milling time eliminated and mullite became the main crystalline phase in 6–72 h MA processed samples. The transformation of starting materials to mullite and t-zirconia was not progressed effectively in ZnO containing samples which were heat treated at 1450 °C. However, by increasing the temperature of the heat treatment process to 1550 °C, both mullite and zirconia were efficiently crystallized in 6–72 h MA processed ZnO containing ones. Scanning electron microscopy results revealed that prolonging the duration of the milling process of the additive containing mixtures from 6 to 72 h could eliminate the acicular morphology of the mullite phase. 72 h mechanically activated ZnO containing sample which was later heat-treated at 1550 °C had the highest noticeable diametral tensile strength of 270 ± 15 MPa. The Weibull modulus of composite samples increased from 10.07 to 12.37 and 20.95 by the addition of TiO2 and ZnO to the starting mixture, respectively. Finally, it was found that prolonging the milling time increased the Weibull modulus remarkably and decreased the Ra values as a result of the homogeneity development in the composite samples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.