Abstract

Mg0 is commonly used as a sacrificial anode in reductive electrosynthesis. While numerous methodologies using a Mg sacrificial anode have been successfully developed, the optimization of the electrochemistry at the anode, i.e., Mg stripping, remains empirical. In practice, electrolytes and organic substrates often passivate the Mg electrode surface, which leads to high overall cell potential causing poor energy efficiency and limiting reaction scale-up. In this study, we seek to understand and manipulate the Mg metal interfaces for a more effective counter electrode in tetrahydrofuran. Our results suggest that the ionic interactions between the cation and the anion of a supporting electrolyte can influence the electrical double layer, which impacts the Mg stripping efficiency. We find halide salt additives can prevent passivation on the Mg electrode by influencing the composition of the solid electrolyte interphase. This study demonstrates that, by tailoring the electrolyte composition, we can modify the Mg stripping process and enable a streamlined optimization process for the development of new electrosynthetic methodologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.