Abstract
Purpose. Based on the research work of units and parts of rolling stock undercarriage in transient modes of emergency situations it is proposed to optimize the sequential placing of peripheral contactless devices for technical control of locomotives and cars on railway lines. Methodology. Investigation of transient processes of temperature increase of faulty axle bearings of locomotives and cars during remote technical diagnosing allows one to organize theory and hardware construction of the peripheral systems for testing the rolling stock on the move. Automatic control of the technical state of the rolling stock on the move – the last and in some cases the only possible process step, which allows revealing unacceptable defects in rolling units and thereby prevent emergencies in railway transport. Findings. Based on the research it was proposed a solution to the optimization problem of placing peripheral control devices of rolling stock when moving according to the criteria of the linear and exponential nature of heating defective axle boxes of wheelsets and other units of undercarriage. The risks of train stop on the railway line because of the erroneous classification of normally heated axle boxes as overheated, as well as the consequences of classification of overheated axle box as normally heated axle boxes were evaluated. Originality. Optimization model of placing peripheral control devices based on probabilistic criteria for evaluating the degree of permissible risk that, at a minimum, should not be exceeded during the transition to control technical means. A functional block diagram of test hardware diagnostics for the wheelsets when determining the gradations of digital indicators of defects was proposed. Practical value. The value of the results obtained lies in the improvement of a method of placing technical control peripheral devices and diagnosing rolling stock when determining the distance between the control stations in the same direction and organizing tracking modes for railcars with developing defects. From a technical point, reduced error probability is directly related to traffic safety and diagnostic algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.