Abstract

The mechanism of plastic deformation in bulk metallic glasses (BMGs) is widely believed to be based on a shear transformation zone (STZ). This model assumes that a shear-induced atomic rearrangement occurs at local clusters that are a few to hundreds of atoms in size. It was recently postulated that the potential energy barrier for STZ activation, WSTZ, calculated using the cooperative shear model, is equivalent to the activation energy for β-relaxation, Eβ. This result suggested that the fundamental process for STZ activation is the mechanically activated β-relaxation. Since the Eβ value and the glass transition temperature Tg of BMGs have a linear relation, that is, because Eβ ≈ 26RTg, the composition of the BMG determines the ease with which the STZ can be activated. Enthalpy relaxation experiments revealed that the BMG Zr50Cu40Al10 when deformed by high-pressure torsion (HPT) has a lower Eβ of 101 kJ/mol. The HPT-processed samples accordingly exhibited tensile plastic elongation (0.34%) and marked decreases in their yield strength (330 MPa). These results suggest that mechanically induced structural defects (i.e., the free volume and the anti-free volume) effectively act to reduce WSTZ and increase the number of STZs activated during tensile testing to accommodate the plastic strain without requiring a change in the composition of the BMG. Thus, this study shows quantitatively that mechanically induced structural defects can overcome the compositional limitations of Eβ (or WSTZ) and result in improvements in the mechanical properties of the BMG.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call