Abstract

Abstract: The addition of high performance nano materials like carbon fibers, carbon nanotubes, graphene etc. in the cement and concrete is gaining attention for achieving multifunctional composite materials with enhanced mechanical, physical and electrical properties. The nano-metric size range and the exceptionally high mechanical properties of carbon nanotubes possess very great potential for their utilization in cementitious composites for obtaining remarkable properties. Billions of ton of concrete is used every year in construction industry and its quantity may be reduced to a large extent only by improving the mechanical and durability properties. One way of achieving the enhanced mechanical properties of cement composite is the utilization of thoroughly dispersed carbon nanotubes in the composite matrix. In the present research, small fractions of multiwall carbon nanotube (MWCNTs) i.e. 0.05 and 0.10 wt.% of cement have been incorporated into the cement concrete and their influence on the mechanical properties of the resulting composites have been studied. It is a well-known fact that the uniform dispersion of the MWCNTs in the composite matrix holds the key for the performance improvement. Therefore, special attention was paid to this aspect and uniform dispersion of MWCNTs was achieved through the use of high energy sonication in the presence of modified acrylic based polymer (acting as a surfactant). The concrete specimens were tested in splitting tensile, flexure and compressive strength after 3, 7, 28 and 56 days of immersed water curing. It was observed that the addition of 0.05wt.% MWCNTs increased the splitting tensile strength by 20.58%, flexural strength by 26.29% and compressive strength by 15.60% as compared to the control mix at 28 days of curing. The strength enhancements for the concrete mixes containing MWCNTs may be regarded to the phenomenon of bridging, pinning and branching of the cracks at nano/micro level due to the presence of MWCNTs. Beside strength enhancements, it was also observed that the MWCNTs had tremendously enhanced the fracture energy and breaking strains of the concrete mixes as observed in three-point bending tests. The research concludes that very low amounts of MWCNTs incorporated in the cement concrete mixes improve their mechanical strengths and fracture behavior remarkably but the thorough dispersion of MWCNTs in the matrix have to be insured.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call