Abstract

The ability to detect differences between groups partially impacts how useful a group-level variable will be for subsequent analyses. Direct consensus and referent-shift consensus group-level constructs are often measured by aggregating group member responses to multi-item scales. We show that current measurement validation practice for these group-level constructs may not be optimized with respect to differentiating groups. More specifically, a 10-year review of multilevel articles in top journals reveals that multilevel measurement validation primarily relies on procedures designed for individual-level constructs. These procedures likely miss important information about how well each specific scale item differentiates between groups. We propose that group-level measurement validation be augmented with information about each scale item's ability to differentiate groups. Using previously published datasets, we demonstrate how ICC(1) estimates for each item of a scale provide unique information and can produce group-level scales with higher ICC(1) values that enhance predictive validity. We recommend that researchers supplement conventional measurement validation information with information about item-level ICC(1) values when developing or modifying scales to assess group-level constructs. (PsycINFO Database Record (c) 2019 APA, all rights reserved).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.