Abstract

Monolayer transition-metal dichalcogenides (TMDs) have grown as fantastic building blocks for optoelectronic applications, owing to their direct band gap, transparency, and mechanical flexibility. Since the luminescence of monolayer TMDs suffers from low light absorption and emission, surface plasmons, which confine light at subwavelength and enhance the local electric field, are utilized to boost both excitation and emission fields of TMDs, enabling strong light-matter interaction at the nano-scale. Meanwhile, radially-polarized beams (RPBs) as new and attractive excitation source have found many applications in surface plasmon polaritons, optical tweezer and so on. Here, by using RPBs, we demonstrate the photoluminescence (PL) enhancement of monolayer molybdenum disulfide (MoS2) hybridized with 210 nm-diameter gold nanoparticle (AuNP) is improved by about 1.37-fold compared with linearly-polarized beams (LPBs). Besides, the PL enhancement with RPBs depends on the size of AuNP as well. With 210nm-diameter AuNP, the PL enhancement is more than 1.5-fold higher than that with 60nm-diameter AuNP. This study highlights that RPBs are superior to LPBs for tuning the near-field system response and shows that RPBs drive a valuable avenue to further study the emerging two-dimentional materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.