Abstract

Carbon coating of electrode materials is nowadays a major tool to improve the electronic percolation of the electrode. In this study, a self-generated carbon coating is described as a new way to deposit a regular thin layer of carbon on the surface of nanoparticles. It relies on the soft decomposition of the nanoparticles surface native ligands, containing alkyl chains, under inert atmosphere at 400 °C, a route particularly suited for oxidation-sensitive nanoparticles. Using 25 nm monodispersed Ni2P nanoparticles as a model phase, we succeeded in forming nonsintered and nonoxidized carbon-coated nanoparticles. The carbon coating is then tuned in thickness by modifying the ligands set. Electrochemical properties of the resulting Ni2P/C nanoparticles vs Li are compared with those of bulk Ni2P. Both materials are shown to undergo a conversion reaction. The capacity of the bulk material collapses after a few cycles while Ni2P/C nanoparticles show much better retention. The self-generated carbon coating is thus found to promote Li uptake by providing a Li-permeable electron-conductive percolating network and by improving the mechanical integrity of the electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.