Abstract

Feasible and easily accessible methods for the rational design of enzyme engineering strategies remain to be established. Thus, a new rationally combined strategy based on disulfide bond engineering and HotSpot Wizard 3.0 was proposed and experimentally demonstrated to be effective using a hyperthermostable β-mannanase. Ten of 42 mutants showed prominent enhancement of kinetic stability with 26.4%–39.9% increases in t1/2 (75 °C) compared with the parent enzyme ManAKH. The best mutant, D273–V308, showed apparent increases in both optimal temperature (5 °C) and T50 (6.8 °C), as well as advanced catalytic efficiency. The low rate of inactive mutants and the high rate of positive mutants indicated that newly introduced screening factors (distance from catalytic residues, Gibbs free energy term, molecular simulation, and visual inspections) greatly enhance the design of thermostable β-mannanase. Moreover, these findings further advance the industrial application of β-mannanase (ManAK) in food and food-related applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.