Abstract

Energy modelling for mechanical machining processes is essential for energy labelling of machined products and as a foundation for selecting optimum cutting conditions that meet economic objectives while reducing energy demand and CO2 footprint. Electrical energy demand in machining can be modelled in two parts: ‘Basic Energy’ demand by the machine tool and ‘Tip Energy’ for actual material removal. A significant amount of research and energy evaluation is based on the use of average specific energy values and ignores the impact of machining conditions. In this comprehensive study, the evaluation of specific tip energy is undertaken, and the effect of chip thickness, tool wear, nose radius and cutting environment is quantified. This work is an essential guide for the application of models to estimate energy demand in practical machining processes. It is of significant importance to improve accuracy in energy-centric modelling of machining processes for sustainable manufacture and resource efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.