Abstract

Polydopamine (PDA) is a synthetic eumelanin polymer mimicking the biopolymer secreted by mussels to attach to surfaces with a high binding strength. It exhibits unique adhesive properties and has recently attracted considerable interest as a multifunctional thin film coating. In this study, we demonstrate that a PDA coating on silica- and polymer-based materials improves the entrapment and retention of uremic toxins produced in specific diseases. The low-cost natural nanotextured fossil diatomaceous earth (DE), an abundant source of mesoporous silica, and polyvinylpyrrolidone-co-Styrene (PVP-co-S), a commercial absorbent comprising polymeric particles, were easily coated with a PDA layer by oxidative polymerization of dopamine at mild basic aqueous conditions. An in-depth chemical-physical investigation of both the resulting PDA-coated materials was performed by SEM, AFM, UV-visible, Raman spectroscopy and spectroscopic ellipsometry. Finally, the obtained hybrid systems were successfully tested for the removal of two uremic toxins (indoxyl sulfate and p-cresyl sulfate) directly from patients' sera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.