Abstract
Two-dimensional layered material of Ti3C2 has been used to improve the hydrogen desorption properties of LiBH4. The results of temperature-programmed dehydrogenation (TPD) and isotherm dehydrogenation (TD) demonstrate that adding the Ti3C2 contributes to the hydrogen storage performance of LiBH4. The dehydrogenation temperature decreases and the dehydrogenation rate increases with increasing the adding amounts of Ti3C2. The onset dehydrogenation temperature of LiBH4 + 40 wt% Ti3C2 composite is 120 °C and approximately 5.37 wt% hydrogen is liberated within 1 h at 350 °C. Furthermore, the activation energy of LiBH4 + wt.% Ti3C2 is also greatly reduced to 70.3 kJ/mol, much lower than that of pure LiBH4. The remarkable dehydrogenation property of the LiBH4+ 40 wt% Ti3C2 may be due to the layered active Ti-containing Ti3C2 and the high surface area of MXene.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.