Abstract
The continuous Hopfield network (CHN) can be used to solve, among other combinatorial optimization problems, the traveling salesman problem (TSP). In order to improve the performance of this heuristic technique, a divide-and-conquer strategy based on two phases is proposed. The first phase involves linking cities with the most neighbors to define a set of chains of cities and, secondly, to join these with isolated cities to define the final tour. Both problems are solved by mapping the two TSPs onto their respective CHNs. The associated parameter-setting procedures are deduced; these procedures ensure the feasibility of the obtained tours, and the quality of the solutions is compared with the pure CHN approach using some traveling salesman problem library (TSPLIB) instances. By means of this strategy, solving TSP instances with sizes of up to 13,509 cities are allowed with the computational resources we had available. Finally, the new divide-and-conquer procedure is improved by tuning the parameter which controls the first phase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.