Abstract

At present it is common to use geographic information system (GIS) applications to assess runoff generation. One of these GIS-based tools to generate maps of dominant runoff processes is the so called GIS-DRP approach. The tool, which has been developed mainly based on agricultural areas, uses commonly available input data like a digital elevation model (DEM), geological information as well as land use information. The aim of this study is to test, validate and improve this GIS-DRP method for forested and silviculture areas. Hence, soil-hydrologic investigations and several mapping techniques of dominant runoff processes were conducted on 25 test-plots in four forested catchments in Rhineland-Palatinate (Germany) and the Grand Duchy of Luxembourg. By comparing the results of the mapping techniques and those of the test plots, weak points in the original GIS-DRP method were detected. Subsequently, it was possible to enhance the GIS-DRP approach by incorporating new discharge relevant parameters like topsoil sealing, extreme weather events and semipermeability of the substratum. Moreover, the improved GIS-DRP approach can be widely used in different landscapes and for different fields of application. The adapted method can now support foresters and decision makers in forestry planning, answer questions concerning the landscape water balance and peripheral water retention or provide extra information for sustainable forest planning in times of a changing climate.

Highlights

  • Introduction & AimIt is expected that global climate change will influence the water balance in Rhineland-Palatinate (Southwest Germany) due to modified temperatures and precipitation distribution (Grigoryan et al [1](p. 1) and Casper et al [2])

  • The knowledge of runoff generation as well as dominant runoff processes (DRP) and their spatial distribution in a catchment or landscape is very important regarding the hydrological behavior of multi-scale catchments, landscape water regimes and flood precaution

  • The geographic information system (GIS)-DRP application resulted in four runoff process maps, which show the dominant runoff processes and their spatial distribution within the investigated basins (Figures 6–9)

Read more

Summary

Introduction

Introduction & AimIt is expected that global climate change will influence the water balance in Rhineland-Palatinate (Southwest Germany) due to modified temperatures and precipitation distribution (Grigoryan et al [1](p. 1) and Casper et al [2]). The knowledge of runoff generation as well as dominant runoff processes (DRP) and their spatial distribution in a catchment or landscape is very important regarding the hydrological behavior of multi-scale catchments, landscape water regimes and flood precaution. In this context [1,3], detailed information about dominant runoff processes can support precautionary measures within suitable areas and helps to implement expert knowledge into a sustainable landscape management. Field investigations to characterize DRPs are the best method to investigate and analyze soil-hydrological parameters and dominant runoff processes in detail.

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.