Abstract

This work describes a new filament deposition in fused deposition modeling process through criterion based on mechanical stress. This criterion requires that the filaments’ directions to follow the principal directions of the stress in the sample. The article also presents several Crack-test specimens that have been printed with and without respect to this criterion. The fracture behavior of these specimens has been investigated. The results show that criterion leads to an improvement of 30% in the fracture toughness. Digital image correlation has been extensively used to study the local strain field in the specimens. The strain cartographies reveal a drastic change in fracture behavior. The modification of filament direction leads to “ductile-like behavior” in crack extension which is characterized by a large deformation zone associated with a slow crack growth rate during the crack propagation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.