Abstract

FeOCl Fenton-like catalyst has drawn much attention due to its high catalytic activity. Nevertheless, the potential application of FeOCl is significantly hindered by the sluggish reduction kinetics of Fe3+ to active Fe2+. Here, we report that the incorporation of Fe − O–Mo electron mediator into FeOCl via forming a FeOCl/MoS2 composite can facilitate the Fe2+ regeneration through the oxidation of Mo4+ to Mo6+, which boosts the hydroxyl radicals yields, thus leading to a significantly improved catalytic performance. The removal efficiency of methylene blue (MB, 50 mg L−1) achieves ∼100% within 2 min. with low dosage of FeOCl/MoS2 (0.2 g L−1) and H2O2 (0.6 mM). FeOCl/MoS2 not only has broad working pH range (∼3 − 9) and high salinity tolerance (100 mM), but also capable to degrade various organic pollutants. For practical application, the fabricated FeOCl/MoS2 membrane effectively degrades continuous MB flow. This study demonstrates that incorporating an electron mediator is an effective way to improve the catalytic performance of heterogeneous Fenton-like catalysts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call