Abstract

BackgroundThere is limited guidance for using common drug therapies in the context of multimorbidity. In part, this is because their effectiveness for patients with specific comorbidities cannot easily be established using subgroup analyses in clinical trials. Here, we use simulations to explore the feasibility and implications of concurrently estimating effects of related drug treatments in patients with multimorbidity by partially pooling subgroup efficacy estimates across trials.MethodsWe performed simulations based on the characteristics of 161 real clinical trials of noninsulin glucose-lowering drugs for diabetes, estimating subgroup effects for patients with a hypothetical comorbidity across related trials in different scenarios using Bayesian hierarchical generalized linear models. We structured models according to an established ontology—the World Health Organization Anatomic Chemical Therapeutic Classifications—allowing us to nest all trials within drugs and all drugs within anatomic chemical therapeutic classes, with effects partially pooled at each level of the hierarchy. In a range of scenarios, we compared the performance of this model to random effects meta-analyses of all drugs individually.ResultsHierarchical, ontology-based Bayesian models were unbiased and accurately recovered simulated comorbidity-drug interactions. Compared with single-drug meta-analyses, they offered a relative increase in precision of up to 250% in some scenarios because of information sharing across the hierarchy. Because of the relative precision of the approaches, a large proportion of small subgroup effects was detectable only using the hierarchical model.ConclusionsBy assuming that similar drugs may have similar subgroup effects, Bayesian hierarchical models based on structures defined by existing ontologies can be used to improve the precision of treatment efficacy estimates in patients with multimorbidity, with potential implications for clinical decision making.

Highlights

  • There is limited guidance for using common drug therapies in the context of multimorbidity

  • We structured models according to an established ontology—the World Health Organization Anatomic Chemical Therapeutic Classifications—allowing us to nest all trials within drugs and all drugs within anatomic chemical therapeutic classes, with effects partially pooled at each level of the hierarchy

  • By assuming that similar drugs may have similar subgroup effects, Bayesian hierarchical models based on structures defined by existing ontologies can be used to improve the precision of treatment efficacy estimates in patients with multimorbidity, with potential implications for clinical decision making

Read more

Summary

Introduction

There is limited guidance for using common drug therapies in the context of multimorbidity In part, this is because their effectiveness for patients with specific comorbidities cannot be established using subgroup analyses in clinical trials. We use simulations to explore the feasibility and implications of concurrently estimating effects of related drug treatments in patients with multimorbidity by partially pooling subgroup efficacy estimates across trials. We performed simulations based on the characteristics of 161 real clinical trials of noninsulin glucose-lowering drugs for diabetes, estimating subgroup effects for patients with a hypothetical comorbidity across related trials in different scenarios using Bayesian hierarchical generalized linear models. By assuming that similar drugs may have similar subgroup effects, Bayesian hierarchical models based on structures defined by existing ontologies can be used to improve the precision of treatment efficacy estimates in patients with multimorbidity, with potential implications for clinical decision making

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.