Abstract

Taking parameter uncertainty into account is key to make drug development decisions such as testing whether trial endpoints meet defined criteria. Currently used methods for assessing parameter uncertainty in NLMEM have limitations, and there is a lack of diagnostics for when these limitations occur. In this work, a method based on sampling importance resampling (SIR) is proposed, which has the advantage of being free of distributional assumptions and does not require repeated parameter estimation. To perform SIR, a high number of parameter vectors are simulated from a given proposal uncertainty distribution. Their likelihood given the true uncertainty is then approximated by the ratio between the likelihood of the data given each vector and the likelihood of each vector given the proposal distribution, called the importance ratio. Non-parametric uncertainty distributions are obtained by resampling parameter vectors according to probabilities proportional to their importance ratios. Two simulation examples and three real data examples were used to define how SIR should be performed with NLMEM and to investigate the performance of the method. The simulation examples showed that SIR was able to recover the true parameter uncertainty. The real data examples showed that parameter 95 % confidence intervals (CI) obtained with SIR, the covariance matrix, bootstrap and log-likelihood profiling were generally in agreement when 95 % CI were symmetric. For parameters showing asymmetric 95 % CI, SIR 95 % CI provided a close agreement with log-likelihood profiling but often differed from bootstrap 95 % CI which had been shown to be suboptimal for the chosen examples. This work also provides guidance towards the SIR workflow, i.e.,which proposal distribution to choose and how many parameter vectors to sample when performing SIR, using diagnostics developed for this purpose. SIR is a promising approach for assessing parameter uncertainty as it is applicable in many situations where other methods for assessing parameter uncertainty fail, such as in the presence of small datasets, highly nonlinear models or meta-analysis.Electronic supplementary materialThe online version of this article (doi:10.1007/s10928-016-9487-8) contains supplementary material, which is available to authorized users.

Highlights

  • Nonlinear mixed effects models (NLMEM) are increasingly used to support drug development [1]

  • A method based on sampling importance resampling (SIR) is proposed, which has the advantage of being free of distributional assumptions and does not require repeated parameter estimation

  • A M/m ratio of 5 was sufficient to compensate the inadequacy in all examples: the dOFV distributions of the SIR resamples were below the Chi square distribution and the temporal trends plots displayed no trends

Read more

Summary

Introduction

Nonlinear mixed effects models (NLMEM) are increasingly used to support drug development [1]. Even though NLMEM have been mainly employed for exploratory purposes, they have been advocated as powerful tools in confirmatory settings [2]. In such settings, the adequacy of the structural and distributional assumptions inherent to NLMEM is important in order to draw correct conclusions. Parameter uncertainty is key to make drug development decisions such as testing whether trial endpoints meet defined criteria, calculating the power of a prospected trial [3], taking a go/no go decision at an interim analysis [4], selecting doses for a Phase II trial [5], or optimizing dosing regimen [6]. Parameter uncertainty in NLMEM is usually obtained from the asymptotic covariance matrix at the maximum likelihood parameter

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.