Abstract
AbstractA comprehensive and accurate estimation of water quality in lakes and reservoirs is vital for the protection of the aquatic biota. Research on the spatiotemporal variations of nitrogen (N) and phosphorus (P) concentrations in lacustrine systems is typically plagued, however, by a lack of long‐term, spatially continuous monitoring data. This paper assembled a 30‐year (1989–2018) data set of water quality in 586 lakes and reservoirs in China, along with basin characteristics and climate conditions, forming the comprehensive data set available. These data were then used in a stacking model (based on random forest, support vector regression, and K‐nearest neighbor models) to identify the relationships between nutrient concentrations and their influencing factors, including net anthropogenic N/P inputs, geographical position, climate, land use pattern, and soil type. The stacking models were developed using data collected over multiple time scales (annual, seasonal, and monthly), which were then applied to reconstruct TN and TP concentrations during the periods of 1980–2018 and 2020s–2050s under the climate scenarios of RCP 4.5 and RCP 8.5. The accuracy of the stacking models was 99.1% and 98.3% for TN and TP concentrations using ensembled data, respectively. The interannual variations in TN and TP contents in the 586 lakes and reservoirs during 1980–2018 exhibited a non‐monotonic pattern with a peak of 1.12 and 0.049 mg/L in 2007, respectively. This study demonstrates that stacking machine learning models represent a new effective approach for estimating nutrient concentrations in unmonitored lakes and reservoirs across broad spatiotemporal scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.