Abstract
The erosion–corrosion behaviour of low-temperature plasma surface alloyed AISI 316 austenitic stainless steel has been compared with untreated material using a newly developed slurry pot erosion–corrosion apparatus containing a slurry comprising 20 wt.% silica sand and 3.5%NaCl at 40 °C. The total erosion–corrosion wastage, the mechanical erosion under cathodic protection and the electrochemical corrosion were measured directly. Based on the data obtained the synergistic effect of erosion and corrosion was calculated. Post-test examination was conducted to identify material degradation mechanisms involved. It has been shown that the erosion–corrosion resistance of AISI 316 austenitic stainless steel can be effectively improved by low-temperature plasma alloying with carbon (carburising) and nitrogen (nitriding) by 50% and 70%, respectively. The degradation process of the untreated steel is dominated by erosion whilst that of the low-temperature plasma carburised material is by an erosion–corrosion mechanism and that of low-temperature plasma nitrided AISI 316 mainly by corrosion–erosion. The synergy between erosion and corrosion can be ranked from low to high in the order: untreated (1.7%), plasma carburised (30.0%) and plasma nitrided (69.4%) material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.