Abstract
The equilibrium performance of a novel gas separation process described quite recently (Sweatman in Chem. Eng. Sci. 65:3907, 2010) called ‘pressure-swing wetting layer absorption’ here is investigated by means of molecular Monte-Carlo simulation. This process is very similar to pressure-swing adsorption except that solvent, in the form of low pressure vapour, is added to the gas to be separated in order to improve equilibrium performance. Earlier work, based on relatively simple density functional theory models, suggests that this process could be significantly more efficient than the analogous pressure-swing adsorption process when tetrahydrofuran (THF) is used as the solvent, although this conclusion is based only on equilibrium behaviour and does not take into account the effect of any dynamical processes. The aim of this work is to provide more detailed molecular simulation results to help understand this behaviour and guide experiments towards suitable solvents and conditions so that the process can experimentally tested. It is found that using acetonitrile as the solvent could be over nine times more effective than THF, which was modelled in previous work, for the particular carbon capture application studied here. These simulation results also demonstrate that, due to the effect of confinement on fluid structure, bulk solubility data cannot be used to reliably predict equilibrium performance in this context, and that the equilibrium performance is especially enhanced for pores that exhibit a bilayer phase transition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.