Abstract
Organic film capacitors have incredibly high power density and have an irreplaceable position in pulsed power systems, high-voltage power transmission networks and other fields. At present, the energy storage density and energy storage efficiency of organic film capacitors are relatively low, resulting in excessive equipment volume. The performance of organic film capacitors is determined by polymer materials, so it is crucial to develop a polymer composite with high energy storage density and high charge-discharge efficiency. Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (P(VDF-CTFE)) is incorporated into the polyvinylidene fluoride (PVDF) matrix by solution blending. The successful preparation of the all-polymer composite material solves the problems of low breakdown electric field strength, low discharge energy density, and low charge-discharge efficiency of high-dielectric ferroelectric materials. The discharge energy density of the PVDF/P(VDF-CTFE) (70/30) film is more than twice that of pure PVDF due to the increase of phases α and γ and the decrease of crystallinity. Under the breakdown electric field (380kV mm-1 ), PVDF/P(VDF-CTFE) (70/30) film also has an ultrahigh energy storage efficiency of 64%. The relationship between the structure and properties of composite materials is investigated in this study, which has important implications for the development of capacitors with high energy storage density.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.