Abstract
Approximate computing applications lead to large energy consumption and performance demand for the memory system. However, traditional SRAM based cache cannot satisfy these demands due to high leakage power and limited density. Spin Transfer Torque Magnetic RAM (STT-MRAM) is a promising candidate of cache due to low leakage power and high density. However, STT-MRAM suffers from high write energy. To leverage the ability of tolerating acceptable quality loss via approximations to data, we propose an STT-MRAM based APProximate cache architecture (APPcache) to write/read approximate data thus largely reducing energy. We find many similar elements (e.g. pixels in images) existing in cache lines while running approximate computing applications. Therefore, APPcache uses several lightweight similarity-based encoding schemes to eliminate the similar elements to reduce the data size thus reducing the write energy of STT-MRAM based cache. Besides, we design a software interface to manually control the output quality. APPcache can significantly eliminate similar elements, thus improving energy efficiency. Experimental results show that our scheme can reduce write energy and improve the image raw data compression ratio by 21.9% and 38.0% compared with the state-of-the-art scheme with 1 % error rate, respectively. As for the output quality, the losses of all benchmarks are within 5% with 1 % error rate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.