Abstract
During the last years, huge efforts have been conducted to reduce the Information and Communication Technology (ICT) sector energy consumption due to its impact on the carbon footprint, in particular, the one coming from networking equipment. Although the irruption of programmable and softwarized networks has opened new perspectives to improve the energy-efficient solutions already defined for traditional IP networks, the centralized control of the Software-Defined Networking (SDN) paradigm entails an increase in the time required to compute a change in the network configuration and the corresponding actions to be carried out (e.g., installing/removing rules, putting links to sleep, etc.). In this paper, a Machine Learning solution based on Logistic Regression is proposed to predict energy-efficient network configurations in SDN. This solution does not require executing optimal or heuristic solutions at the SDN controller, which otherwise would result in higher computation times. Experimental results over a realistic network topology show that our solution is able to predict network configurations with a high feasibility (>95%), hence improving the energy savings achieved by a benchmark heuristic based on Genetic Algorithms. Moreover, the time required for computation is reduced by a factor of more than 500,000 times.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.