Abstract

Hydraulic presses are widely applied in various forming processes to manufacture products with complex shapes, however, they are energy-intensive. In order to lower the energy consumption, a variable-speed variable-displacement pump unit (SVVDP) was developed for hydraulic presses, where the flow rate required by the press in a forming process can be realized by changing the motor rotating speed and the pump displacement simultaneously. A theoretical model was built to reveal the energy dissipation behavior of the drive unit, which shows that the energy efficiency of the drive unit can be optimized by varying the rotating speed of the motor under a variety of load conditions. An experimental platform with a SVVDP was established to find the optimum rotating speed and the corresponding displacement in different load conditions, and experimental results verified the improved energy efficiency of the SVVDP compared with that of the commonly used single variable drive unit. By employing the strategy that the determined optimum rotating speeds in different load conditions were preset as recommended values for the drive unit working in different operations, the proposed drive unit was applied to a press completing a forming process and the results indicate significant energy saving potentials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.