Abstract
AbstractThe H2020 SafeSpace project aims at the implementation of a space weather safety prototype, in particular to predict the deep charging hazard. The proposed service is built on a Sun‐to‐Earth chain of physical codes that propagates physical information and uncertainties in order to model the outer radiation belt dynamics. In this paper, we present the inner magnetosphere section of the SafeSpace pipeline that relies on solar wind driven and hourly updated models that describe the trapped electron environment (VLF waves, cold plasma and seed population densities), as well as the physical processes to which the trapped electrons are subjected to, such as radial diffusion and wave particle interactions. Then, this physical configuration is poured into the Salammbô‐EnKF model, a data assimilation radiation belt model which provides a global forecast of the densities across the radiation belts. We have compared the forecasting performance of this new modeling pipeline to a reference model during the St. Patrick's Day storm in 2015. We show that the new SafeSpace implementation shows closer results to the observations in addition to a better forecast within the prediction horizon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.